首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancing the Peroxygenase Activity of a Cofactor-Independent Peroxyzyme by Directed Evolution Enabling Gram-Scale Epoxide Synthesis
Authors:Marie-Cathérine Sigmund  Guangcai Xu  Eleonora Grandi  Prof. Gerrit J. Poelarends
Affiliation:Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusignlaan 1, 9713 AV Groningen, The Netherlands
Abstract:Peroxygenases selectively incorporate oxygen into organic molecules making use of the environmentally friendly oxidant H2O2 with water being the sole by-product. These biocatalysts can provide ‘green’ routes for the synthesis of enantioenriched epoxides, which are fundamental intermediates in the production of pharmaceuticals. The peroxyzyme 4-oxalocrotonate tautomerase (4-OT), catalysing the epoxidation of a variety of α,β-unsaturated aldehydes with H2O2, is outstanding because of its independence from any cost-intensive cofactor. However, its low-level peroxygenase activity and the decrease in the enantiomeric excess of the corresponding α,β-epoxy-aldehydes under preparative-scale conditions is limiting the potential of 4-OT. Herein we report the directed evolution of a tandem-fused 4-OT variant, which showed an ∼150-fold enhanced peroxygenase activity compared to 4-OT wild type, enabling the synthesis of α,β-epoxy-aldehydes in milligram- and gram-scale with high enantiopurity (up to 98 % ee) and excellent conversions. This engineered cofactor-independent peroxyzyme can provide new opportunities for the eco-friendly and practical synthesis of enantioenriched epoxides at large scale.
Keywords:cofactor-independent  directed evolution  epoxidation  peroxygenase  peroxyzyme
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号