首页 | 本学科首页   官方微博 | 高级检索  
     


Anion Recognition with Antimony(III) and Bismuth(III) Triaryl-Based Pnictogen Bonding Receptors
Authors:Heike Kuhn  Dr. Andrew Docker  Prof. Paul D. Beer
Affiliation:Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
Abstract:The synthesis and characterisation of a library of acyclic antimony(III) and bismuth(III) triaryl pnictogen bonding (PnB) receptor systems are reported. In the first-generation receptor series, quantitative 1H NMR chloride titration experiments in THF solvent media reveal halide anion binding potency is intimately correlated with both the electronic-withdrawing nature of the aryl- substituent and the polarisability of the PnB donor. Further extensive anion binding investigations with the most potent Sb- and Bi-based PnB receptors: 1⋅Sb2CF3 and 1⋅Bi2CF3 , reveal novel selectivity profiles, both displaying Cl selectivity relative to the heavier halides and, impressively, to a range of highly basic oxoanions. The synthesis and preliminary chloride anion binding studies of a series of novel tripodal tris-proto-triazole triaryl Sb(III) and Bi(III) mixed PnB-HB receptor systems are also described. Whereas parent triphenyl Sb(III) and Bi(III) compounds are incapable of binding Cl in THF solvent media, the PnB-triazole HB host systems exhibit notable halide affinity.
Keywords:anion recognition  antimony  bismuth  pnictogen bonding  sigma-hole interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号