首页 | 本学科首页   官方微博 | 高级检索  
     


A case study of algorithm selection for the traveling thief problem
Authors:Markus Wagner  Marius Lindauer  Mustafa Mısır  Samadhi Nallaperuma  Frank Hutter
Affiliation:1.Optimisation and Logistics Group, School of Computer Science,The University of Adelaide,Adelaide,Australia;2.Institut für Informatik,Albert-Ludwigs-Universit?t Freiburg,Freiburg,Germany;3.Institute of Machine Learning and Computational Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing,China;4.Department of Computer Science,University of Sheffield,Sheffield,UK
Abstract:Many real-world problems are composed of several interacting components. In order to facilitate research on such interactions, the Traveling Thief Problem (TTP) was created in 2013 as the combination of two well-understood combinatorial optimization problems. With this article, we contribute in four ways. First, we create a comprehensive dataset that comprises the performance data of 21 TTP algorithms on the full original set of 9720 TTP instances. Second, we define 55 characteristics for all TPP instances that can be used to select the best algorithm on a per-instance basis. Third, we use these algorithms and features to construct the first algorithm portfolios for TTP, clearly outperforming the single best algorithm. Finally, we study which algorithms contribute most to this portfolio.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号