首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of the charge separated state P865(+)Q(A)- in the photosynthetic reaction centers of Rhodobacter sphaeroides by quantum beat oscillations and high-field electron paramagnetic resonance: evidence for light-induced Q(A)- reorientation
Authors:Heinen Ulrich  Utschig Lisa M  Poluektov Oleg G  Link Gerhard  Ohmes Ernst  Kothe Gerd
Affiliation:Department of Physical Chemistry, University of Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany.
Abstract:The structure of the secondary radical pair, P865(+)Q(A)-, in fully deuterated and Zn-substituted reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides R-26 has been determined by high-time resolution and high-field electron paramagnetic resonance (EPR). A computer analysis of quantum beat oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the orientation of the various magnetic tensors of P865(+)Q(A)- with respect to a magnetic reference frame. The orientation of the g-tensor of P865(+) in an external reference system is adapted from a single-crystal W-band (95 GHz) EPR study [Klette, R.; T?rring, J. T.; Plato, M.; M?bius, K.; B?nigk, B.; Lubitz, W. J. Phys. Chem. 1993, 97, 2015-2020]. Thus, we obtain the three-dimensional structure of the charge separated state P865(+)Q(A)- on a nanosecond time scale after light-induced charge separation. Comparison with crystallographic data reveals that the position of the quinone is essentially the same as that in the X-ray structure. However, the head group of Q(A)- has undergone a 60 degrees rotation in the ring plane relative to its orientation in the crystal structure. Analysis suggests that the two different QA conformations are functionally relevant states which control the electron-transfer kinetics from Q(A)- to the secondary quinone acceptor QB. It appears that the rate-limiting step of this reaction is a reorientation of Q(A)- in its binding pocket upon light-induced reduction. The new kinetic model accounts for striking observations by Kleinfeld et al. who reported that electron transfer from Q(A)- to QB proceeds in RCs cooled to cryogenic temperature under illumination but does not proceed in RCs cooled in the dark [Kleinfeld, D.; Okamura, M. Y.; Feher, G. Biochemistry 1984, 23, 5780-5786].
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号