首页 | 本学科首页   官方微博 | 高级检索  
     


Corrections for underresolved scalar measurements in turbulent flows using a DNS database
Authors:Paolo Burattini  Maxime Kinet  Daniele Carati  Bernard Knaepen
Affiliation:(1) Physique Statistique et des Plasmas, Université Libre de Bruxelles, 1050 Brussels, Belgium
Abstract:We estimate the effect of finite spatial resolution of a probe for scalar measurements, using a database from direct numerical simulations (DNS). These are for homogeneous isotropic turbulence in temporal decay, Schmidt number unity, and low Taylor-microscale Reynolds number (≃27–42). The probe could be a cold wire for measuring temperature in a turbulent flow. Correction factors for the scalar variance, scalar dissipation rate, and mixed velocity-scalar derivative skewness are estimated, for a sensor length up to 15 times the Batchelor length scale. It is shown that the lack of resolution yields the largest attenuation on the dissipation rate, followed by the scalar variance. On the contrary, the mixed skewness, which is affected the least, is overestimated. Further, it is shown that if one estimates the mixed skewness via the scalar variance dynamical equation and neglects the term involving the time derivative of the scalar energy spectrum, large errors in the correction factor of the mixed skewness are introduced. Finally, it is found that correction factors obtained assuming Kraichnan scalar model spectrum and following Wyngaard (in Phys Fluids 14:2052–2054, 1971) approach are close to those from the DNS.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号