首页 | 本学科首页   官方微博 | 高级检索  
     


Photochemically controlled electrochemical deposition and dissolution of Ag0 nanoclusters on au electrode surfaces
Authors:Riskin Michael  Katz Eugenii  Gutkin Vitaly  Willner Itamar
Affiliation:Institute of Chemistry and Center of Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Abstract:A photoisomerizable thiolated nitrospiropyran SP, (1a), monolayer is assembled on a Au electrode by the primary deposition of thiolated nitromerocyanine isomer 1b as a monolayer on the electrode, followed by the irradiation of the surface with visible light, lambda > 475 nm. The surface coverage of nitrospiropyran units (1a) on the electrode is 2 x 10-10 mole cm-2. Irradiation of the electrode with UV light, 320 nm < lambda < 360 nm, results in the nitromerocyanine, MR, monolayer on the electrode that binds Ag+ ions to the phenolate units. The Ag+ ions associated with the MR monolayer undergo cyclic reduction to surface-confined Ag0 nanoclusters, and reoxidation and dissolution of the Ag0 nanoclusters to Ag+ ions associated with the monolayer are demonstrated. The electron-transfer rate constants for the reduction of Ag+ to Ag0 and for the dissolution of Ag0 were determined by chronoamperometry and correspond to ketred = 12.7 s-1 and ketox = 10.5 s-1, respectively. The nanoclustering rate was characterized by surface plasmon resonance measurements, and it proceeds on a time scale of 10 min. The size of the Ag0 nanoclusters is in the range of 2 to 20 nm. The electrochemically induced reduction of the MR-Ag+ monolayer to the MR-Ag0 surface and the reoxidation of the MR-Ag0 surface control the hydrophilic-hydrophobic properties of the surface. The advancing contact angle of the MR-Ag0-functionalized surface is 59 degrees , and the contact angle of the MR-Ag+-monolayer-functionalized surface is 74 degrees . Photoisomerization of the Ag0-MR surface to the Ag0-SP state, followed by the oxidation of the Ag0 nanoclusters, results in the dissolution of the Ag+ ions into the electrolyte solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号