首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface structural,morphological, and catalytic studies of homogeneously dispersed anisotropic Ag nanostructures within mesoporous silica
Authors:Shweta Sareen  Vishal Mutreja  Bonamali Pal  Satnam Singh
Institution:1.School of Chemistry and Biochemistry,Thapar University,Patiala,India;2.Department of Chemistry,Maharishi Markandeshwar University,Mullana,India
Abstract:Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1–10 wt.%) of Ag loading followed by calcination at 350 °C under H2 led to change in the morphology of Ag nanoparticles from nanospheres (~7–8 nm) to nanorods (aspect ratio ~12–30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m2/g of SBA-15 to 385 m2/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.
Graphical abstract This paper demonstrates the spontaneous formation of uniformly dispersed Ag nanospecies of various morphologies (nanospheres, size ~7–8 nm and nanorods, aspect ratio ~12–30 nm), both within as well as on the surface of the mesoporous SBA-15, as a function of increased Ag loading. Surface structural and other physiochemical properties of Ag/m-SBA-15 nanocomposites were considerably influenced w.r.t change in Ag loading. Ag/m-SBA-15 nanocomposites with 4 wt.% Ag loading exhibited the highest selectivity (87 %) for the selective reduction of p-dinitrobenzene to p-nitroaniline and 100 % selectivity for p-nitrophenol to p-aminophenol and p-nitroacetophenone to p-aminoacetophenone, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号