首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和奇异值分解的图像水印算法研究
引用本文:姚军财. 基于小波变换和奇异值分解的图像水印算法研究[J]. 光学技术, 2017, 43(5): 439-444
作者姓名:姚军财
作者单位:陕西理工大学物理与电信工程学院 ,陕西汉中,723000
基金项目:国家自然科学基金项目,陕西省科技新星计划项目,陕西省教育厅专项科研项目
摘    要:利用小波变换频谱特性和图像奇异值分解特征,提出了一种结合人眼对比感知特性的图像水印算法。并通过结合人眼视觉特性,将置乱的水印以一定的强度嵌入到图像的奇异值矩阵中,采用其逆过程提取水印,通过仿真进行了验证。对其实施了压缩、剪切、高斯噪声和中值滤波攻击测试,与前人提出的8种水印算法的抗攻击性能进行对比分析。结果表明,在质量因子为20%的较强压缩攻击下,提取水印的NC值仍能达到0.8359,含水印图的PSNR和SSIM达到25.0908dB和0.8451,且比8种水印算法具有更好的鲁棒性。综合表明,提出的算法有效地解决了水印嵌入过程中鲁棒性、视觉透明性与水印嵌入量之间的平衡问题。

关 键 词:图像水印  离散小波变换  奇异值分解  峰值信噪比

Image watermark algorithm base on the discrete wavelet transform and singular value decomposition
YAO Juncai. Image watermark algorithm base on the discrete wavelet transform and singular value decomposition[J]. Optical Technique, 2017, 43(5): 439-444
Authors:YAO Juncai
Abstract:Based on the spectral features of discrete wavelet transform and the singular value decomposition of image , an image watermarking algorithm combined with the contrast perception characteristics of human visual system (HVS) is proposed .By combining HVS characteristics ,the scrambled watermarking are embed into the singular value matrix of image in some intensity ,and the watermarking is extracted from the watermarked image using the inverse process of em-bedding watermarking .The algorithm is verified by simulation and is tested by four attacks ,namely compression ,shear , Gauss noise and median filter .The experimental results are compared with the ones of 8 watermarking algorithms pro-posed by predecessors ,respectively .The results show the NC of extracted watermark still can get to 0 .8359 under the stronger compression attack whose quality factor only is 20% ,the PSNR and SSIM of watermarked image can shill reach 25 .0908dB and 0 .8451 .It has better robustness .The results show that the algorithm can effectively solve the problem to balance the relation among the robustness ,visual transparency and embedding capacity of watermark .
Keywords:image watermark  discrete wavelet transform  singular value decomposition  peak signal to noiseratio
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号