首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量回归机的水文混沌时间序列预测
引用本文:姜翔程. 基于支持向量回归机的水文混沌时间序列预测[J]. 数学的实践与认识, 2012, 42(19): 71-78
作者姓名:姜翔程
作者单位:河海大学 水利经济研究所,江苏 南京,211100
基金项目:教育部人文社科规划基金,国家社科基金一般项目
摘    要:支持向量机在系统辨识和分类研究方面比较成熟,目前尚没有提出有效的支持向量回归理论来解决非线性、时变、干扰的复杂问题.支持向量回归机主要用于因果关系点对的回归预测,把支持向量回归机应用于水文混沌时间序列的预测研究是一个有意义的工作.在支持向量机一般理论基础上,提出了水文混沌时间序列支持向量回归机模型,并就模型进行仿真计算,讨论了模型参数对支持向量回归机预测精度的影响,为模型参数寻优提供一般指导原则.直门达水文站径流量混沌时间序列支持向量回归机预测实验表明,水文混沌时间序列支持向量回归机模型是有效的.

关 键 词:混沌  水文时间序列  支持向量回归机  预测

Prediction of Hydrologic Chaotic Time Series Based on Support Vector Regression
JIANG Xiang-cheng. Prediction of Hydrologic Chaotic Time Series Based on Support Vector Regression[J]. Mathematics in Practice and Theory, 2012, 42(19): 71-78
Authors:JIANG Xiang-cheng
Affiliation:JIANG Xiang-cheng (Institute of Water Resource Economic,Hohai University,Nanjing 211100,China)
Abstract:At present the support vector machine is mature in the system identification and the classified research,still had not proposed the support vector regression theory to solve complex system with non-linear,time-variable and disturbance.The support vector regression machine mainly uses to forecast relationship between cause and effect.According to the support vector machine theory,proposes a support vector regression model to hydrologic chaotic time series prediction,discusses to the influence of parameters on the model precision with simulation for guiding to choose the model parameters.The application of monthly runoff of Zhimenda indicates that the support vector regression model can deal with the complicated hydrologic data array well,and there is the good prediction precision.
Keywords:chaos  hydrologic time series  support vector regression  prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号