首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spontaneous and persistent currents in mesoscopic Aharonov-Bohm loops: Static properties and coherent dynamic behavior in crossed electric and magnetic fields
Authors:I O Kulik
Institution:(1) Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA;(2) Department of Physics, Bilkent University, Ankara, 06533, Turkey
Abstract:Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to support persistent currents due to the Aharonov-Bohm flux, and the “spontaneous” persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity, which is further restored at the increasing field, however. The dynamics of the Aharonov-Bohm loop in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号