首页 | 本学科首页   官方微博 | 高级检索  
     

基于氨基酸模糊聚类分析的跨膜区域预测
引用本文:邓勇,刘琪,李亦学. 基于氨基酸模糊聚类分析的跨膜区域预测[J]. 化学学报, 2004, 62(19): 1968-1972
作者姓名:邓勇  刘琪  李亦学
作者单位:上海交通大学电子信息学院,上海,200030;中国科学院上海生命科学研究院生物信息中心,上海,200031
基金项目:863计划 (No.2 0 0 1AA2 31 0 1 1 ),上海市自然科学基金 (No.0 3ZR1 4 0 65)资助项目
摘    要:跨膜蛋白在进化过程中,序列保守性较差,即使是同源蛋白序列的一致性程度也较低,因而在跨膜区预测算法中,通过序列的一致性程度来选取训练集并不能有效地消除预测结果对训练集的过度适应性.本文提出了一种基于氨基酸模糊聚类分析的预测算法,通过氨基酸在各个区域分布的相似性程度进行模糊聚类,从而根据一类氨基酸的分布特性而不是各个氨基酸的分布特性进行跨膜区预测.结果表明,该方法能在一定程度上消除训练集的选取对测试结果的影响,提高跨膜蛋白拓扑结构预测的准确度,特别是提高对目前知之甚少的跨膜蛋白的预测准确度.

关 键 词:氨基酸  跨膜蛋白  模糊聚类  跨膜区预测

Prediction of Transmembrane Segments Based on Fuzzy Cluster Analysis of Amino Acids
DENG,Yong,#,a LIU,Qi #,b LI,Yi-Xue,b. Prediction of Transmembrane Segments Based on Fuzzy Cluster Analysis of Amino Acids[J]. Acta Chimica Sinica, 2004, 62(19): 1968-1972
Authors:DENG  Yong  #  a LIU  Qi #  b LI  Yi-Xue  b
Abstract:Transmembrane protein sequences are badly conserved during evolution. Even two homologous proteins have a low level of sequence identity. Consequently, the commonly used method to select training sequences based on sequence identity can not efficiently reduce the sampling bias in the transmembrane segment predictions. To solve this problem, this paper presents a new prediction algorithm based on fuzzy cluster analysis of amino acids. It clusters the amino acids into groups according to their distribution similarity in different regions and then makes the prediction based on the distribution properties of each group instead of those of each amino acid. The results show that the new algorithm can efficiently reduce the impact of the selection of training sequences on the prediction results to some extent and thus improve the prediction accuracy.
Keywords:amino acid   transmembrane protein   fuzzy cluster   transmembrane segment prediction   
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号