首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and luminescent properties of rare-earth-doped CeO2–CaF2 solid solutions via chemical solution routes
Authors:Shinobu Fujihara  Hiroki Sato
Institution:Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Abstract:CeO2–CaF2 solid solutions were synthesized by a chemical solution method starting from metal acetates, trifluoroacetic acid as a fluorine source, and anhydrous ethanol as a solvent. Precursor gels, which were obtained by drying the resultant ethanolic solution at 110 °C, were heat-treated at a temperature in the range 400–1000 °C in air to obtain powdery products. Elemental analysis by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that heating products actually contained cerium, calcium, oxygen, and fluorine. According to X-ray diffraction analysis, possible reaction pathways under high-temperature treatments were considered as initial formation of fluorides (CeF3 and CaF2), subsequent oxidation of Ce3+ to Ce4+ in air, and final conversion to fluorite-type Ce–Ca–O–F solid solutions. Doping of Eu3+ or Sm3+ ions in the solid solutions led to occurrence of their characteristic photoluminescence due to intra-configurational f–f electronic transitions. Photo-excitation was achieved by irradiation with near ultraviolet light mainly through charge transfer from O2− to Ce4+ in the solid solutions and subsequent energy transfer to the doped ions. Spectral structures of photoluminescence suggested the occupation of Eu3+ or Sm3+ in Ce4+ sites with inversion symmetry in the solid solutions.
Keywords:Calcium fluoride  Cerium oxide  Trifluoroacetic acid  Solid solution  Luminescence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号