首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical investigation on electronic structure and second-order nonlinear optical properties of novel hexamolybdate-organoimido-(car)borane hybrid
Authors:Ma Nana  Yan Likai  Guan Wei  Qiu Yongqing  Su Zhongmin
Affiliation:Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.
Abstract:We report a theoretical study based on density functional theory (DFT) on the geometric and electronic structure, linear optical and second-order nonlinear optical properties of a series of new inorganic-organic hybrid hexamolybdate-organoimido-(car)boranes. By the incorporation of borane/carborane at the end of the phenyl ring of the organoimido segment, the studied systems show excellent nonlinear optical (NLO) response than the organoimido-substituted hexamolybdate. The computed static first hyperpolarizability β(vec) value of [Mo(6)O(18)(NC(8)H(8))(B(12)H(11))](4-) (II) is largest, -167.2 × 10(-30) esu, and a higher β(vec) value of [Mo(6)O(18)(NC(8)H(8))(C(2)B(10)H(11))](2-) (III-2p) is 58.6 × 10(-30) esu. Moreover, the time-dependent (TD)DFT calculation illustrates that the maximum absorption, which is helpful for the large NLO responses, is mainly assigned to the charge transfer (CT) from (car)borane and organoimido segment to the hexamolybdate cluster. The density of density (DOS) calculations further illustrate the excitation from valence orbitals of boron atoms to that of Mo and O atoms in hexamolybdate can be responsible for larger NLO responses. The linear and nonlinear optical properties of species III both vary with the position of the vertex on the carborane. Furthermore, the order of the β(vec) values is consistent with the bathochromic shift of the maximum absorption for our studied systems, and the studied systems show a wider transparency range extending into the entire visible and infrared (IR) region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号