首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerically Stable Generation of Correlation Matrices and Their Factors
Authors:Philip I Davies  Nicholas J Higham
Institution:(1) Department of Mathematics, University of Manchester, Manchester, M13 9PL, England;(2) Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
Abstract:Correlation matrices—symmetric positive semidefinite matrices with unit diagonal—are important in statistics and in numerical linear algebra. For simulation and testing it is desirable to be able to generate random correlation matrices with specified eigenvalues (which must be nonnegative and sum to the dimension of the matrix). A popular algorithm of Bendel and Mickey takes a matrix having the specified eigenvalues and uses a finite sequence of Givens rotations to introduce 1s on the diagonal. We give improved formulae for computing the rotations and prove that the resulting algorithm is numerically stable. We show by example that the formulae originally proposed, which are used in certain existing Fortran implementations, can lead to serious instability. We also show how to modify the algorithm to generate a rectangular matrix with columns of unit 2-norm. Such a matrix represents a correlation matrix in factored form, which can be preferable to representing the matrix itself, for example when the correlation matrix is nearly singular to working precision.
Keywords:Random correlation matrix  Bendel-Mickey algorithm  eigenvalues  singular value decomposition  test matrices  forward error bounds  relative error bounds  IMSL  NAG Library  Jacobi method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号