首页 | 本学科首页   官方微博 | 高级检索  
     


Electron spin density distribution in the special pair triplet of Rhodobacter sphaeroides R26 revealed by magnetic field dependence of the solid-state photo-CIDNP effect
Authors:Thamarath Smitha Surendran  Bode Bela E  Prakash Shipra  Sai Sankar Gupta Karthick Babu  Alia A  Jeschke Gunnar  Matysik Jörg
Affiliation:Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
Abstract:Photo-CIDNP (photochemically induced dynamic nuclear polarization) can be observed in frozen and quinone-blocked photosynthetic reaction centers (RCs) as modification of magic-angle spinning (MAS) NMR signal intensity under illumination. Studying the carotenoidless mutant strain R26 of Rhodobacter sphaeroides, we demonstrate by experiment and theory that contributions to the nuclear spin polarization from the three-spin mixing and differential decay mechanism can be separated from polarization generated by the radical pair mechanism, which is partially maintained due to differential relaxation (DR) in the singlet and triplet branch. At a magnetic field of 1.4 T, the latter contribution leads to dramatic signal enhancement of about 80,000 and dominates over the two other mechanisms. The DR mechanism encodes information on the spin density distribution in the donor triplet state. Relative peak intensities in the photo-CIDNP spectra provide a critical test for triplet spin densities computed for different model chemistries and conformations. The unpaired electrons are distributed almost evenly over the two moieties of the special pair of bacteriochlorophylls, with only slight excess in the L branch.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号