首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM
Authors:Thyparambil Aby A  Wei Yang  Latour Robert A
Institution:Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States.
Abstract:The interactions between peptides and proteins with material surfaces are of primary importance in many areas of biotechnology. While surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance (QCM) methods have proven to be very useful in measuring fundamental properties characterizing adsorption behavior, such as the free energy of adsorption for peptide-surface interactions, these methods are largely restricted to use for materials that can readily form nanoscale-thick films over the respective sensor surfaces. Many materials including most polymers, ceramics, and inorganic glasses, however, are not readily suitable for use with SPR or QCM methods. To overcome these limitations, we recently showed that desorption forces (F(des)) obtained using a standardized AFM method linearly correlate to standard-state adsorption free energy values (ΔG°(ads)) measured from SPR in phosphate buffered saline (PBS: phosphate buffered 140 mM NaCl, pH 7.4). This approach thus provides a means to determine ΔG°(ads) for peptide adsorption using AFM that can be applied to any flat material surface. In this present study, we investigated the F(des)-ΔG°(ads) correlation between AFM and SPR data in PBS for a much broader range of systems including eight different types of peptides on a set of eight different alkanethiol self-assembled monolayer (SAM) surfaces. The resulting correlation was then used to estimate ΔG°(ads) from F(des) determined by AFM for selected bulk polymer and glass/ceramic materials such as poly(methyl methacrylate) (PMMA), high-density polyethylene (HDPE), fused silica glass, and a quartz (100) surface. The results of these studies support our previous findings regarding the strong correlation between F(des) measured by AFM and ΔG°(ads) determined by SPR, and provides a means to estimate ΔG°(ads) for peptide adsorption on macroscopically thick samples of materials that are not conducive for use with SPR or QCM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号