首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monitoring of metabolic profiling and water status of Hayward kiwifruits by nuclear magnetic resonance
Authors:D Capitani  N Proietti  A Tomassini  ME Di Cocco  R De Salvador
Institution:a Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica “Annalaura Segre”, CNR, I-00015 Monterotondo, Rome, Italy
b Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
c Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
d CRA Centro di Ricerca per la Frutticoltura, Via Fioranello 5, I-00134 Rome, Italy
Abstract:The metabolic profiling of kiwifruit (Actinidia deliciosa, Hayward cultivar) aqueous extracts and the water status of entire kiwifruits were monitored over the season (June-December) using nuclear magnetic resonance (NMR) methodologies. The metabolic profiling of aqueous kiwifruit extracts was investigated by means of high field NMR spectroscopy. A large number of water-soluble metabolites were assigned by means of 1D and 2D NMR experiments. The change in the metabolic profiles monitored over the season allowed the kiwifruit development to be investigated. Specific temporal trends of aminoacids, sugars, organic acids and other metabolites were observed.The water status of kiwifruits was monitored directly on the intact fruit measuring the T2 spin-spin relaxation time by means of a portable unilateral NMR instrument, fully non-invasive. Again, clear trends of the relaxation time were observed during the monitoring period.The results show that the monitoring of the metabolic profiling and the monitoring of the water status are two complementary means suitable to have a complete view of the investigated fruit.
Keywords:AA  ascorbic acid  ATP  adenosine tri-phosphate  ALA  alanine  ARG  arginine  ASN  asparagine  ASP  aspartate  CHN  choline  CA  citric acid  COSY  correlated spectroscopy  CPMG  Carr Purcell Meiboom Gill  DOSY  diffusion ordered spectroscopy  αFRUfu  d-fructofuranose" target="_blank">α-d-fructofuranose  βFRUfu  d-fructofuranose" target="_blank">β-d-fructofuranose  βFRUpy  d-fructopyranose" target="_blank">β-d-fructopyranose  FRU6P  fructose-6-phosphate  αGAL  α-galactose  βGAL  β-galactose  GAL-U  galactose-U  GARP  globally optimized alternating phase rectangular pulse  GLUtCA  d-glucopyranosyl-trans-caffeic acid" target="_blank">O3-β-d-glucopyranosyl-trans-caffeic acid  GLUcCA  d-glucopyranosyl-cis-caffeic acid" target="_blank">O3-β-d-glucopyranosyl-cis-caffeic acid  αGLC  α-glucose  βGLC  β-glucose  αGLC6P  α-glucose-6-phosphate  βGLC6P  β-glucose-6-phosphate  GLU  glutamate  GLN  glutamine  HMBC  heteronuclear multiple-bond correlation  HSQC  heteronuclear single quantum coherence  ILE  isoleucine  LA  lactic acid  LEU  leucine  LYS  lysine  MA  malic acid  αMAN  α-mannose  βMAN  β-mannose  MI  myo-inositol  NOESY  nuclear overhauser and exchange spectroscopy  PGSE  pulsed field gradient spin echo  QA  quinic acid  RAF  raffinose  RIB  ribose  SHA  shikimic acid  SUCR  sucrose  THR  threonine  TOCSY  total correlation spectroscopy  TRP  triptophane  TSP  trimethylsilylpropionate  URI  uridine  VAL  valine  αXYL  α-xylose  βXYL  β-xylose
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号