首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Displacement-dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of trace silver in environmental and geological samples
Authors:Pei Liang  Linlin Zhang  Ehong Zhao
Institution:Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
Abstract:A novel displacement-dispersive liquid-liquid microextraction method was developed for the selective determination of trace silver in complicated samples by graphite furnace atomic absorption spectrometry. This method involves two steps of dispersive liquid-liquid microextraction (DLLME). Firstly, copper ion reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex and extracted with DLLME procedure using carbon tetrachloride (extraction solvent) and methanol (dispersive solvent); then, the sedimented phase was dispersed into the sample solution containing silver ion with methanol and another DLLME procedure was carried out. Because the stability of Ag-DDTC is larger than that of Cu-DDTC, Ag+ can displace Cu2+ from the pre-extracted Cu-DDTC and thus the preconcentration of Ag+ was achieved. Potential interference from co-existing transition metal ions with lower DDTC complex stability was largely eliminated as they cannot displace Cu2+ from Cu-DDTC complex. The tolerance limits for the co-existing ions were increased by a long way compared with conventional DLLME. Under the optimal conditions, the limit of detection was 20 ng L−1 (3σ) for silver with a sample volume of 5.0 mL, and an enhancement factor of 72 was achieved. The proposed method was successfully applied to determine of trace silver in some environmental and geological samples with satisfactory results.
Keywords:Displacement-dispersive liquid-liquid microextraction  Silver  Graphite furnace atomic absorption spectrometry  Environmental and geological samples
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号