首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of cysteic acid groups on the gas-phase reactivity and dissociation of [M + 4H]4+ ions from insulin chain B
Authors:Nigel P Ewing  Carolyn J Cassady
Institution:Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA.
Abstract:Gas-phase ion/molecule reactions and collision-induced dissociation (CID) were conducted on M + 4H]4+ of insulin chain B. This Fourier transform mass spectrometry work involved ions from the oxidized peptide (with two cysteic acid residues) and its reduced form (with two cysteine residues). Kinetic behavior during deprotonation and hydrogen/deuterium exchange reactions indicates that insulin B (ox) ions have two distinct structural types. In contrast, insulin B (red) ions have only one major reacting population, which has a more compact structure than the oxidized ions. No significant differences in fragmentation patterns for the two insulin B (ox) populations were observed when CID was performed as a function of deprotonating reaction time. However, markedly different fragmentation was found between M + 4H]4+ of insulin B (ox) and (red). Therefore, the presence of cysteic acid groups in insulin B (ox) significantly impacts dissociation and presumably structure. This suggests that some insulin B (ox) ions are zwitterionic, with the five basic sites protonated and one cysteic acid group deprotonated. Molecular dynamics calculations revealed several viable structures that are consistent with the experimental results. For example, the most stable form of the reduced ion, which is unprotonated at the His10, is very compact and has lost the alpha-helix of native insulin. Low energy structures for the oxidized ions include a zwitterion with an intraionic interaction between anionic Cyx7 and cationic His10, as well as a nonzwitterionic conformer that lacks a proton at Phe1; both structures retain the alpha-helix. These structures may account for the two experimentally observed isomers, although others are possible. In addition, experiments on oxidized insulin B were conducted from methanolic solution, which may denature the conformation, and pure aqueous solution, which may leave a native conformation. These differences in solvent composition had no effect on the gas-phase results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号