首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles
Authors:Keivan Kiani
Institution:1. Department of Civil Engineering, K.N. Toosi University of Technology, Valiasr Ave., P.O. Box 19967-15433, Tehran, Iran
Abstract:The capability of carbon nanotubes (CNTs) in efficient transporting of drug molecules into the biological cells has been the focus of attention of various scientific disciplines during the past decade. From applied mechanics points of view, translocation of a nanoparticle inside the pore of a CNT would result in vibrations. The true understanding of the interactive forces between the moving nanoparticle and the inner surface of the CNT is a vital step in factual realization of such vibrations. Herein, by employing the nonlocal Rayleigh beam theory, nonlinear vibrations of single-walled carbon nanotubes (SWCNTs) as nanoparticle delivery nanodevices are studied. The existing van der Waals interactional forces between the constitutive atoms of the nanoparticle and those of the SWCNT, frictional force, and both longitudinal and transverse inertial effects of the moving nanoparticle are taken into account in the proposed model. The nonlinear-nonlocal governing equations are explicitly obtained and then numerically solved using Galerkin method and a finite difference scheme in the space and time domains, respectively. The roles of the velocity and mass weight of the nanoparticle, small-scale effect, slenderness ratio, and vdW force on the maximum longitudinal and transverse displacements as well as the maximum nonlocal axial force and bending moment within the SWCNT are examined. In general, the obtained results reveal that the nonlinear analysis should be performed when the nanotube structure is traversed by a moving nanoparticle with high levels of the mass weight and velocity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号