首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise
Institution:1. Department of Mathematics, Universitat Politècnica de Catalunya, Spain;2. Department of Engineering Mathematics, University of Bristol, UK;3. Department of Mathematics & Institute of Industrial and Control Engineering, Universitat Politècnica de Catalunya, Spain
Abstract:This article presents an analytical investigation on stability and local bifurcation behavior due to exponentially decaying friction characteristics in the sliding domain of a simple friction oscillator, which is commonly referred to as “mass-on-a-belt”-oscillator. Friction is described by a friction coefficient which in the sense of Stribeck depends on the relative velocity between the two tribological partners.For such a characteristic the stability and bifurcation behavior are discussed. It is shown, that the system can undergo a subcritical Hopf-bifurcation from an unstable steady-state fixed-point to an unstable limit cycle, which separates the basins of the stable steady-state fixed-point and the self-sustained stick-slip limit cycle.Therefore, only a local examination of the eigenvalues at the steady-state, as is the classical approach when investigating conditions for the onset of friction-induced vibrations, may not give the whole picture, since the stable region around the steady-state fixed-point may be rather small.Furthermore, the results of above considerations are applied to a brake-noise problem. It is found that, in contrast to squeal, a decaying friction characteristic may be a satisfying explanation for the onset low-frequency groan. The analytical results are compared with experimental measurements.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号