首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Asymptotic analysis of wall modes in a flexible tube
Authors:V Kumaran
Institution:(1) Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India, IN
Abstract:The stability of wall modes in a flexible tube of radius R surrounded by a viscoelastic material in the region R < r < H R in the high Reynolds number limit is studied using asymptotic techniques. The fluid is a Newtonian fluid, while the wall material is modeled as an incompressible visco-elastic solid. In the limit of high Reynolds number, the vorticity of the wall modes is confined to a region of thickness in the fluid near the wall of the tube, where the small parameter , and the Reynolds number is , and are the fluid density and viscosity, and V is the maximum fluid velocity. The regime is considered in the asymptotic analysis, where G is the shear modulus of the wall material. In this limit, the ratio of the normal stress and normal displacement in the wall, , is only a function of H and scaled wave number . There are multiple solutions for the growth rate which depend on the parameter .In the limit , which is equivalent to using a zero normal stress boundary condition for the fluid, all the roots have negative real parts, indicating that the wall modes are stable. In the limit , which corresponds to the flow in a rigid tube, the stable roots of previous studies on the flow in a rigid tube are recovered. In addition, there is one root in the limit which does not reduce to any of the rigid tube solutions determined previously. The decay rate of this solution decreases proportional to in the limit , and the frequency increases proportional to . Received: 5 November 1997 / Revised: 10 March 1998 / Accepted: 29 April 1998
Keywords:PACS  83  50  -v Deformation  material flow - 47  15  Fe Stability of laminar flows - 47  60  +i Flows in ducts  channels  nozzles            and conduits
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号