首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling a dimer state in CuGeO3 in the two-dimensional anisotropic Heisenberg model with alternated exchange interaction
Authors:S S Aplesnin
Institution:(1) L. V. Kirenskii Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
Abstract:The two-dimensional Heisenberg spin-1/2 model with alternated exchange interaction along the c axis and an anisotropic distribution of the exchange interaction in the lattice, J b/J c=0.1, is examined. A quantum Monte Carlo method is used to calculate the phase diagrams of the antiferromagnet, the dimer state in a plane, the value of the alternation δ of the exchange interaction, and the anisotropy Δ=1−J xy/J z of the exchange interaction, Δ∼δ 0.58(6). The following characteristics are calculated for Δ=0.25: the dependence of the temperature of the dimer-state-paramagnet transition on the alternation of the exchange interaction, T c(δ)=0.55(4)(δ−0.082(6))0.50(3), the singlet-triplet energy gap, and the dependence of the magnetization on the external field for some values of δ. The value of the exchange interaction, J c=127 K, the alternation of the exchange interaction, δ=0.11J c, and the correlation radius along the c axis, ξ c≈28c, are determined. Finally, it is found that the temperature dependence of the susceptibility and the specific heat are in good agreement with the experimental data. Zh. éksp. Teor. Fiz. 112, 2184–2197 (December 1997)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号