首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The synthesis, structure and dynamic behaviour of disubstituted alkenylphosphine derivatives of [Rh6(CO)16
Authors:Krupenya Dmitrii V  Selivanov Stanislav I  Tunik Sergey P  Haukka Matti  Pakkanen Tapani A
Institution:Department of Chemistry, St. Petersburg University, Universitetskii pr.26, St. Petersburg 198504, Russian Federation.
Abstract:A series of Rh(6)(CO)(16)] substituted derivatives containing Ph(2)P(alkenyl) ligands has been synthesized starting from the Rh(6)(CO)(16-x)(NCMe)(x)](x= 1, 2) clusters and Ph(2)P((CH(2))(n)CH=CH(2))(n= 2, 3) phosphines. It was shown that the terminal alkenyl substituents in these phosphines easily undergo isomerization in the coordination sphere of the hexarhodium complexes to give the allyl -CH(2)CH=C(H)R (R = Me and Et) fragments coordinated through the double bond of the rearranged organic moieties. The solid-state structure of two clusters, Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH(2)CH=C(H)CH(3))](4) and Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH(2)CH=C(H)CH(2)CH(3))](8), was established by X-ray crystallography. Solution structures of the products obtained were also characterized by IR and NMR ((1)H, (31)P, (1)H-(1)H COSY and (1)H-(1)H NOE) spectroscopy. It was shown that 4 and 8 exist in solution as mixtures of three isomers (A, B and C), which differ in the conformation of the coordinated allyl fragment. A similar (two species, A and B) equilibrium was found to occur in the solution of the Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH(2)CH=CH(2))](2) cluster. The dynamic behaviour of 2, 4 and 8Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH=CH(2))] has been studied using VT (31)P and (1)H-(1)H NOESY NMR spectroscopy, rate constants and activation parameters of the (A<-->B) isomerization processes were determined. It was shown that the most probable mechanism of this isomerization involves a dissociative Rh6(CO)(14)(kappa1-Ph(2)P(alkenyl))] intermediate and re-coordination of the double bond to the same metal atom where the process started from. The conversion of the A and B species in and into the third isomer very likely occurs through the transfer of an allyl hydrogen atom onto the rhodium skeleton to give eventually cis conformation of the coordinated allyl fragment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号