首页 | 本学科首页   官方微博 | 高级检索  
     


Sonochemical reactions with mesoporous alumina
Authors:Tony Chave  Sergei I. Nikitenko  Dominique Granier  Thomas Zemb
Affiliation:1. Institut de Chimie Séparative de Marcoule, UMR 5257 ICSM Site de Marcoule, BP 17171, 30207 Bagnols sur Cèze Cedex, France;2. Université Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Abstract:Herein, we report the sonochemical reactions with MSU-X mesoporous alumina (m-Al2O3) in aqueous solutions. Sonication (f = 20 kHz, I = 30 W cm?2, Waq = 0.67 W mL?1, T = 36–38 °C, Ar) causes significant acceleration of m-Al2O3 dissolution in the pH range of 4–11. Moreover, power ultrasound has a dramatic effect on the textural properties and phase composition of m-Al2O3. Short-time sonication at pH = 4 leads to the formation of nanorods and nanofibers of boehmite, AlO(OH). Prolonged ultrasonic treatment causes high aspect morphology transformation to aggregated nanosheets in weakly acid solutions or plated nanocrystals in alkaline solutions. Sonochemical products in alkaline medium are composed principally from boehmite and small amounts of bayerite, Al(OH)3. Silent hydrolysis of m-Al2O3 yields boehmite at pH = 4 and bayerite at pH = 11. The effect of ultrasound on the textural properties of mesoporous alumina as well as on the transformation of nanosized bayerite to boehmite can be consistently attributed to the transient strong heating of the liquid shell surrounding the cavitation bubble which caused the chemical processes similar to those occurred during hydrothermal treatment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号