首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoluminescence and Raman scattering of ZnO nanorods
Authors:Rui Zhang  Peng-Gang Yin  Ning Wang  Lin Guo
Institution:School of Chemistry and Environments, Beijing University of Aeronautics and Astronautics, Beijing 100083, People''s Republic of China
Abstract:Zinc oxide (ZnO) nanorods were synthesized by a simple microemulsion method. The photoluminescence (PL) spectra at room temperature were measured. The strong UV excitonic emission indicates the good optical properties, and the weak deep-level emission reveals very limited structural defects in the crystals. The multiple peaks in the PL spectrum obtained at 15 K are assigned to the donor-bound exciton (DBE), free to bound transition (FB) and FB–LO phonon replicas. The temperature dependence of energy, intensity, and linewidth of each emission band confirms the effect of thermal ionization progress of excitons and nonradiative recombination activated thermally. The nonresonant Raman scattering spectra at room temperature were excited by He–Ne laser (wavelength ~632.8 nm). The perfect wurtzite structure in ZnO nanorods has been verified by the intense E2 modes, which include low and high frequency vibrations. The possible reasons for the red shift and broadening of vibration modes were studied by the resonant Raman scattering spectra at room temperature. The power-dependence of Raman shift and FWHM shows the laser irradiation effect on the vibrational modes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号