首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries
Authors:Mark Sonny S  Bergkvist Magnus  Yang Xin  Teixeira Leonardo M  Bhatnagar Parijat  Angert Esther R  Batt Carl A
Institution:Department of Microbiology, Cornell University, Ithaca, New York 14853, USA. ssm12@cornell.edu
Abstract:Two-dimensional (2-D) surface layer (S-layer) protein lattices isolated from the gram-positive bacterium Deinococcus radiodurans and the acidothermophilic archaeon Sulfolobus acidocaldarius were investigated and compared for their ability to biotemplate the formation of self-assembled, ordered arrays of inorganic nanoparticles (NPs). The NPs employed for these studies included citrate-capped gold NPs and various species of CdSe/ZnS core/shell quantum dots (QDs). The QD nanocrystals were functionalized with different types of thiol ligands (negative- or positive-charged/short- or long-chain length) in order to render them hydrophilic and thus water-soluble. Transmission electron microscopy, Fourier transform analyses, and pair correlation function calculations revealed that ordered nanostructured arrays with a range of spacings (approximately 7-22 nm) and different geometrical arrangements could be fabricated through the use of the two types of S-layers. These results demonstrate that it is possible to exploit the physicochemical/structural diversity of prokaryotic S-layer scaffolds to vary the morphological patterning of nanoscale metallic and semiconductor NP arrays.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号