首页 | 本学科首页   官方微博 | 高级检索  
     


Acid-base equilibria of various oxidation states of aqua-ruthenium complexes with 1,10-phenanthroline-5,6-dione in aqueous media
Authors:Fujihara Tetsuaki  Wada Tohru  Tanaka Koji
Affiliation:Institute for Molecular Science and CREST, JAPAN Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
Abstract:Syntheses and pH dependent electrochemical properties of aqua-ruthenium(II) complexes, [Ru(trpy)(PDA-N,N')(OH2)](ClO4)2 ([1](ClO4)2) and [Ru(trpy)(PD-N,N')(OH2)](ClO4)2 ([2](ClO4)2) (trpy = 2,2':6',2'-terpyridine, PDA = 6-acetonyl-6-hydroxy-1,10-phenanthroline-5-one, PD = 1,10-phenanthroline-5,6-dione) are presented. Treatment of [Ru(trpy)(PD-N,N')Cl](PF6) with AgClO4 in a mixed solvent of acetone and H2O selectively produced the acetonyl-PD complex [1](ClO4)2, and the similar treatment in a mixed solvent of 2-methoxyethanol and H2O gave the PD complex [2](ClO4)2. The molecular structures of both complexes were determined by X-ray structural analysis. The proton dissociation constants of various oxidations state of [1]2+ and [2]2+ were evaluated by simulation of E(1/2) values of those redox potentials depending on pH. The simulation revealed that the acetonyl-PD complex [1]2+ underwent successive Ru(II)/Ru(III) and Ru(III)/Ru(IV) redox couples though the two redox reactions were not separated in the cyclic voltammograms. The redox behavior of [2]2+ in H2O is reasonably explained by not only the similar successive metal-centered redox reactions but also simultaneous two-electron quinone/catechol redox couple of the PD ligand including the contribution of hydration on a carbonyl carbon.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号