首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Well-defined azlactone-functionalized (co)polymers on a solid support: synthesis via supported living radical polymerization and application as nucleophile scavengers
Authors:Fournier David  Pascual Sagrario  Montembault Véronique  Haddleton David M  Fontaine Laurent
Institution:UCO2M, LCOM-Chimie des Polymères, UMR CNRS 6011, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France.
Abstract:Wang resin has been converted to a supported initiator for transition metal-mediated living radical polymerization often called atom-transfer radical polymerization (ATRP) of 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) and styrene (S). Several "Rasta" resins with well-defined macromolecular architectures, including homopolymers PVDM, PS, statistical P(S-stat-VDM), block P(S-b-VDM), and PS-b-(S-stat-VDM)] copolymers, have been elaborated. For the homopolymerization of VDM and S, a sacrificial initiator, benzyl 2-bromoisobutyrate (BBI), has been introduced to monitor the evolution of molar masses and polydispersity indexes (PDIs) of PS and PVDM onto the Wang resin support without cleavage. After 6 h, 86.7% conversion of VDM is reached, with the isolated PVDM chains having a molar mass of 18 000 g mol(-1) and a PDI value of 1.22. Block copolymers have been synthesized in two steps, involving the synthesis of the PS block isolated at low conversions (<15%) to maintain the bromine end-chain functionality and the subsequent synthesis of the second PVDM or P(S-stat-VDM) block. Polydispersity indexes of the cleaved (co)polymers were low (PDI = 1.11-1.44), and high azlactone loadings have been reached (loading = 6.0 mmol g(-1)). Such azlactone-functionalized Wang resins have shown high efficiency during the scavenging process of benzylamine as monitored by HPLC. Moreover, grafted statistical copolymers have shown the best behavior for removing benzylamine because of an improvement of the accessibility of azlactone rings by the dilution with styrene units.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号