首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced electrochemical sensing of nitric oxide using a nanocomposite consisting of platinum-tungsten nanoparticles,reduced graphene oxide and an ionic liquid
Authors:Maduraiveeran Govindhan  Aicheng Chen
Institution:1.Department of Chemistry,Lakehead University,Thunder Bay,Canada
Abstract:We describe a high-performance nitric oxide (NO) sensor by using a nanocomposite consisting of platinum-tungsten alloy nanoparticles, sheets of reduced graphene oxide and an ionic liquid (PtW/rGO-IL) that was deposited onto the surface of a glassy carbon (GC) electrode. The modified GC electrode exhibits excellent electrocatalytic activity toward the oxidation of NO with a strong peak at 0.78 V vs. Ag/AgCl due to the synergistic effects of bimetallic PtW nanoparticles, reduced graphene oxide nanosheets and an ionic liquid. The sensor possesses a detection limit as low as 0.13 nM, high sensitivity (3.01 μA μM?1 cm2), and good selectivity over electroactive interferents that may exist in biological systems. The sensor was tested to selectively distinguish NO in actual human serum and urine samples, confirming potential practical applications. In our perception, the approach described here may be extended to the fabrication of various kind of composites made from metal nanostructures, graphene and ionic liquids for medical and environmental analysis.
Graphical abstract Enhanced electrochemical sensing of nitric oxide (NO) is demonstrated by utilizing the synergistic effects of bimetallic PtW nanoparticles dispersed on reduced graphene oxide and ionic liquid nanocomposite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号