首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mean-field phenomenology of wetting in nanogrooves
Authors:Peter Yatsyshin
Institution:Department of Chemical Engineering, Imperial College London, London, United Kingdom
Abstract:ABSTRACT

In this special issue article, we bring together our recent research on wetting in confinement, in particular planar walls, wedges, capillary grooves and slit pores, with emphasis on phase transitions and competition between wetting, filling and condensation, and highlight their similarities and disparities. The results presented are obtained with the classical density functional theory (DFT) for fluids, which is a mean-field statistical mechanical framework for including the spatial variations of the fluid density into the thermodynamic equation of state. For wetting in sculpted substrates, we solve numerically the DFT equations to obtain the fluid density profiles, wetting isotherms and phase diagrams. This allows us to contrast the wetting phenomenology of grooves, planar walls, slit and wedge-shaped pores. Of particular interest are the transitions associated with capillary condensation, planar pre-wetting and mean-field wedge pre-filling lines.
Keywords:Classical density functional theory  wetting  phase transitions  nanoconfinement
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号