首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-assembled monolayers as a base for immunofunctionalisation: unequal performance for protein and bacteria detection
Authors:Eva Baldrich  Olivier Laczka  F Javier del Campo  Francesc Xavier Muñoz
Institution:(1) Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Esfera UAB, Campus Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
Abstract:Biosensor development strongly depends on the optimisation of surface functionalisation strategies. When gold surfaces are considered, immunofunctionalisation by modification of self-assembled monolayers (SAMs) is one of the preferred approaches. In this respect, SAM-based antibody (Ab) incorporation has shown better performance than Ab physisorption for the detection of proteins and small targets. Reports on bacteria detection are less frequent. In this work, we assess the performance of various SAM-based gold immunofunctionalisation strategies, currently applied to protein detection, in the field of bacteria determination. We present the results for Ab chemical conjugation on mercaptopropanoic acid and mercaptoundecanoic acid SAMs, as well as on a dextranized cysteamine SAM. All the modified surfaces studied were shown to be appropriate for the direct detection of an enzyme-labelled protein, but none succeeded in detecting a bacterial target in a sandwich assay format. Conversely, gold functionalised by Ab physisorption allowed E. coli detection when a sandwich enzyme-linked assay was carried out. The implications of bacteria size and wall complexity are discussed. These results indicate that immunofunctionalisation strategies appropriate for protein detection are not necessarily transferable to work with more complex targets such as bacteria. In this respect, Ab physisorption appears to be a suitable alternative to SAM-based gold functionalisation for bacteria detection.
Keywords:Surface immunofunctionalisation  Self-assembled monolayer  Antibody conjugation  Bacteria detection
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号