首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The nature of the indenyl effect
Authors:Calhorda Maria José  Romão Carlos C  Veiros Luis F
Institution:ITQB, Av. da República, EAN Apt 127, 2781-901 Oeiras, Portugal.
Abstract:The eta(5)-to-eta(3) coordination shift of cyclopentadienyl (Cp=C(5)H(5)(-)) and indenyl (Ind=C(9)H(7)(-)) ligands in molybdenocene complexes, (eta(5)-Cp')(eta(5)-Cp)Mo(CO)(2)](2+) (Cp'=Cp or Ind), driven by a two-electron reduction of those species, was studied and compared by means of molecular orbital calculations (B3LYP HF/DFT hybrid functional, DZP basis sets). The results obtained, in terms of optimized geometries, relative energies, and bond analysis parameters, compare well with the experimental data, and verify the well-known indenyl effect, that is, a significantly more facile eta(5)-to-eta(3) rearrangement for the indenyl ligand when compared to cyclopentadienyl. However, the study of the folding of free Cp and Ind, combined with the (eta(5/3)-Cp')-M bond analysis, shows that the observed difference is not the result of an intrinsic characteristic of the indenyl ligand, such as the traditionally accepted aromaticity gain in the benzene ring formed in eta(3)-Ind complexes. Instead, it is directly related to the Cp'-M bond strength. While the difference in the energy required to fold the two free ligands is negligible (< or =1 kcal mol(-1) for folding angles up to 20 degrees), the (eta(5)-Cp)-M bond is stronger than that of (eta(5)-Ind)-M; however, the opposite situation is found for the eta(3) coordination mode. The net result, for Cp'=Ind, is a destabilization of the eta(5) complexes and a stabilization of the eta(3) intermediates or transition states yielding smaller activation energies and faster reaction rates for processes in which that is the rate-determining step.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号