首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multifunctional fourfold interpenetrating diamondoid network: gas separation and fabrication of palladium nanoparticles
Authors:Cheon Young Eun  Suh Myunghyun Paik
Institution:Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.
Abstract:A fourfold interpenetrating diamondoid network, {Ni(cyclam)]2-(mtb)}(n)].8n H2O.4n DMF (1) (MTB=methanetetrabenzoate, DMF=dimethylformamide), has been assembled from Ni(cyclam)]ClO4]2 (cyclam=1,4,8,11-tetraazacyclotetradecane) and methanetetrabenzoic acid (H4MTB) in DMF/H2O (7:3, v/v) in the presence of triethylamine (TEA). Despite the high-fold interpenetration, 1 generates 1D channels that are occupied by water and DMF guest molecules. Solid 1, after removal of guest molecules, exhibits selective gas adsorption behavior for H2, CO2, and O2 rather than N2 and CH4, suggesting possible applications in gas separation technologies. In addition, solid 1 can be applied in the fabrication of small Pd (2.0+/-0.6 nm) nanoparticles without any extra reducing or capping agent because a Ni II macrocyclic species incorporated in 1 reduces Pd II ions to Pd 0 on immersion of 1 in the solution of Pd(NO3)2.2H2O in MeCN at room temperature.
Keywords:adsorption  coordination polymers  nanomaterials  palladium  redox reactions
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号