首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The curvelet representation of wave propagators is optimally sparse
Authors:Emmanuel J Cands  Laurent Demanet
Institution:Emmanuel J. Candès,Laurent Demanet
Abstract:This paper argues that curvelets provide a powerful tool for representing very general linear symmetric systems of hyperbolic differential equations. Curvelets are a recently developed multiscale system 7, 9] in which the elements are highly anisotropic at fine scales, with effective support shaped according to the parabolic scaling principle width ≈ length2 at fine scales. We prove that for a wide class of linear hyperbolic differential equations, the curvelet representation of the solution operator is both optimally sparse and well organized.
  • It is sparse in the sense that the matrix entries decay nearly exponentially fast (i.e., faster than any negative polynomial) and
  • well organized in the sense that the very few nonnegligible entries occur near a few shifted diagonals.
Indeed, we show that the wave group maps each curvelet onto a sum of curveletlike waveforms whose locations and orientations are obtained by following the different Hamiltonian flows—hence the diagonal shifts in the curvelet representation. A physical interpretation of this result is that curvelets may be viewed as coherent waveforms with enough frequency localization so that they behave like waves but at the same time, with enough spatial localization so that they simultaneously behave like particles. © 2005 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号