首页 | 本学科首页   官方微博 | 高级检索  
     

基于分布参数估计的锂离子电池故障预测建模
引用本文:黄亮,姚畅. 基于分布参数估计的锂离子电池故障预测建模[J]. 化学物理学报, 2017, 30(5): 547-552
作者姓名:黄亮  姚畅
作者单位:北京交通大学电子信息工程学院, 北京 100044,国家自然科学基金委员会信息中心, 北京 100085
基金项目:This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
摘    要:

收稿时间:2017-05-05

Failure Prediction Modeling of Lithium Ion Battery toward Distributed Parameter Estimation
Liang Huang and Chang Yao. Failure Prediction Modeling of Lithium Ion Battery toward Distributed Parameter Estimation[J]. Chinese Journal of Chemical Physics, 2017, 30(5): 547-552
Authors:Liang Huang and Chang Yao
Affiliation:School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China and Information Center, National Natural Science Foundation of China, Beijing 100085, China
Abstract:Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
Keywords:Lithium ion battery  Failure prediction  Battery model  Distributed parameter
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号