首页 | 本学科首页   官方微博 | 高级检索  
     


Self-assembly,structure, and dynamic interconversion of metallosupramolecular architectures generated by Pb(II) binding-induced unfolding of a helical ligand
Authors:Barboiu Mihail  Vaughan Gavin  Graff Roland  Lehn Jean-Marie
Affiliation:Laboratoire de Chimie Supramoléculaire, ISIS, Université Louis Pasteur, 8, allée Gaspard Monge, BP 70028, F-67083, Strasbourg, Cedex, France.
Abstract:The binding of lead(II) cations to the terpyridine-type subunits of the helical ligand 1 leads to the self-assembly of different polynuclear metallosupramolecular architectures of nanometric size. Three different entities are generated and may be interconverted as a function of metal/ligand stoichiometry: a [4 x 4]Pb(16)(II) grid-type array 2, a [4 # 4]Pb(12)(II) double-cross species 4, and an intermediate complex 3. The structures of 2 and 4 have been confirmed by X-ray crystallography; that of 3 is based on NMR spectral data. The interconversion of the three species generates dynamic diversity and represents an expression of constitutional dynamic chemistry. In the course of ion binding, the helical molecules of ligand 1 unwrap to yield fully extended strands arranged in perpendicular fashion in the architectures 2-4 generated. This process amounts to molecular motions in two directions which confer to the present systems characteristics of two-dimensional nanomechanical devices, capable of performing 2D-contraction/extension motions. The triple features of self-organization, dynamic interconversion, and potential addressability displayed by the processes described trace a self-fabrication approach to nanoscience and nanotechnology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号