Abstract: | Using published data on the kinetics of pyrolysis of C2Cl6 and estimated rate parameters for all the involved radical reactions, a mechanism is proposed which accounts quantitatively for all the observations: The steady-state rate law valid for after about 0.1% reaction is and the reaction is verified to proceed through the two parallel stages suggested earlier whose net reaction is A reported induction period obtained from pressure measurements used to follow the rate is shown to be compatible with the endothermicity of reaction A, giving rise to a self-cooling of the gaseous mixture and thus an overall pressure decrease. From the analysis, the bond dissociation energy DH0(C2Cl5? Cl) is found to be 70.3 ± 1 kcal/mol and ΔHf3000(·C2Cl5) = 7.7 ± 1 kcal/mol. The resulting π? bond energy in C2Cl4 is 52.5 ± 1 kcal/mol. |