首页 | 本学科首页   官方微博 | 高级检索  
     


Extremal probabilities for Gaussian quadratic forms
Authors:Gábor J. Székely  Nail K. Bakirov
Affiliation:(1) Department of Mathematics and Statistics, Bowling Green State University Bowling Green, OH 43403-0221, U.S.A. e-mail: gabors@bgnet.bgsu.edu and Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences Budapest, Hungary, US;(2) Institute of Mathematics, USC Russian Academy of Sciences 112 Chernyshevskii St. 450000 Ufa, Russia. e-mail: bakirov@imat.rb.ru, RU
Abstract: Denote by Q an arbitrary positive semidefinite quadratic form in centered Gaussian random variables such that E(Q)=1. We prove that for an arbitrary x>0, inf Q P(Qx)=P2 n /nx), where χ n 2 is a chi-square distributed rv with n=n(x) degrees of freedom, n(x) is a non-increasing function of x, n=1 iff x>x(1)=1.5364…, n=2 iff x[x(2),x(1)], where x(2)=1.2989…, etc., n(x)≤rank(Q). A similar statement is not true for the supremum: if 1<x<2 and Z 1 ,Z 2 are independent standard Gaussian rv's, then sup0≤λ≤1/2 PZ 1 2 +(1−λ)Z 2 2 x} is taken not at λ=0 or at λ=1/2 but at 0<λ=λ(x)<1/2, where λ(x) is a continuous, increasing function from λ(1)=0 to λ(2)=1/2, e.g. λ(1.5)=.15…. Applications of our theorems include asymptotic quantiles of U and V-statistics, signal detection, and stochastic orderings of integrals of squared Gaussian processes. Received: 24 June 2002 / Revised version: 26 January 2003 Published online: 15 April 2003 Research supported by NSA Grant MDA904-02-1-0091 Mathematics Subject Classification (2000): Primary 60E15, 60G15; Secondary 62G10
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号