首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases
Authors:João Carlos de O Souza
Institution:1.Institute of Problems of Mechanical Engineering, Russian Academy of Sciences,Saint Petersburg State University,Saint Petersburg,Russia
Abstract:In the second part of our study, we introduce the concept of global extended exactness of penalty and augmented Lagrangian functions, and derive the localization principle in the extended form. The main idea behind the extended exactness consists in an extension of the original constrained optimization problem by adding some extra variables, and then construction of a penalty/augmented Lagrangian function for the extended problem. This approach allows one to design extended penalty/augmented Lagrangian functions having some useful properties (such as smoothness), which their counterparts for the original problem might not possess. In turn, the global exactness of such extended merit functions can be easily proved with the use of the localization principle presented in this paper, which reduces the study of global exactness to a local analysis of a merit function based on sufficient optimality conditions and constraint qualifications. We utilize the localization principle in order to obtain simple necessary and sufficient conditions for the global exactness of the extended penalty function introduced by Huyer and Neumaier, and in order to construct a globally exact continuously differentiable augmented Lagrangian function for nonlinear semidefinite programming problems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号