首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface‐enhanced resonance Raman spectroscopic characterization of cytochrome c immobilized on 2‐mercaptoethanesulfonate monolayers on silver
Authors:Agata Krlikowska  Jolanta Bukowska
Abstract:Single‐component self‐assembled monolayers (SAMs) of mercaptoethanesulfonate (MES) on Ag surfaces were studied with surface‐enhanced resonance Raman scattering (SERRS) spectroscopy with a view to their application to immobilize (ferro)cytochrome c (cyt c). SERS studies revealed that MES molecules adopt primarily trans (T) conformation even at early stages of the SAM growth and over wide range of pH values. High accessibility of the negatively charged groups for (bio)molecules in solution makes single‐component MES SAMs suitable linkage monolayers for electrostatic attachment of cyt c, which was verified with SERRS. Cyt c was successfully anchored to MES‐coated Ag at natural (∼5), neutral, and isoelectric point (10.6) pH. At pH = 7.0 and 10.6, SERRS bands characteristic of native six‐coordinated low‐spin (6cLS) heme iron configuration were detected. Lack of buffering resulted in additional appearance of five‐coordinated high‐spin (5cHS) SERRS markers and the presence of bands indicating ferric ion. An electrostatic attraction between protein and SAM was confirmed to exclude the hydrophobic interactions involved in cyt c binding. Cyt c attached to MES SAM on Ag was found to be electroactive at neutral pH, and protein oxidation was assisted with reversible conversion of 6cLS to the non‐native 5cHS state. Alteration of heme orientation deduced from SERRS spectra upon change of redox state allowed us to propose the protein dynamics as the electron transfer rate‐limiting step. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:SER(R)S  cytochrome c immobilization  2‐mercaptoethanesulfonate monolayers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号