首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical multi-block grids in coastal ocean circulation modeling
Institution:1. Department of Oceanography, Naval Postgraduate School, Monterey CA 93943-5122, USA;2. University of Texas at Austin, WES DoD HPC MSRC, Vicksburg, MS 39180, USA
Abstract:In coastal ocean modeling, one desires to capture the evolution and interaction of multi-scales of physical phenomena in a complicated physical domain. With limited computer resources, an appropriate choice of the numerical grid has a key role in determining the quality of the solution of a numerical coastal ocean model. Traditionally, single-block rectangular grids have been most commonly used in coastal ocean modeling for their simplicity. An effective coastal ocean model represents the dynamics of the coastal ocean flow on a numerical grid, including the effects of complicated features such as coastlines, bottom topography (submarine canyons, seamounts, narrow straits), and multi-scale physical phenomena. These problems require a model grid system more efficient than a traditional single-block rectangular grid. The model grids must give better resolution of coastlines and boundary conditions, multi-scale physical phenomenon, and save computer resources. These grids can also easily increase horizontal resolution in a subregion of the model domain without increasing computer expense with high resolution over the entire domain. The multi-block numerical generation grid technique is used in developing a coastal ocean system applied to the Mediterranean Sea (MED) with complicated coastlines, bottom topography and multi-scale physical features. The MED coastal ocean system consists of the MED model based on the Princeton Ocean Model, numerical grid generation routines, and a grid package which allows the model to be coupled with model grids. The traditional, nine-block orthogonal grid, and eight-block curvilinear nearly orthogonal coastline-following grid are used in the study. The numerical solutions with the three grids are compared in term of effectiveness. The numerical simulations show some MED basic physical features.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号