首页 | 本学科首页   官方微博 | 高级检索  
     


Survival of molecular information under surfaced‐enhanced resonance Raman (SERRS) conditions
Authors:K. D. Jernshø  j,S. Hassing
Abstract:In the present paper, we discuss the molecular information that can be derived from surface‐enhanced resonance Raman Scattering (SERRS) experiments performed with different excitation wavenumbers, which are close to resonance with an excited electronic state of the molecule [surface‐enhanced Raman dispersion spectroscopy (SERADIS)]. We specifically consider the situation, where a molecule is physisorbed to a site characterized by a local electric field with a direction independent of the direction of the external, exciting field. The molecular information available in this experimental situation is compared with the information available in a corresponding Raman dispersion spectroscopy (RADIS) experiment performed on a free molecule or a molecule physisorbed to a site, where the local field is isotropic. The consequences for resonance Raman scattering (RRS) and RADIS, when the molecule is adsorbed in the highly anisotropic hot spot (HS), are discussed; here it is shown that only the molecular information originating from the symmetric part of the scattering tensor can survive in SERRS and in SERADIS. Besides, it is shown that the depolarization ratio can no longer be used to discriminate between totally and non‐totally symmetric modes in the polarized surface‐enhanced Raman scattering (SERS) spectra. These results have implications for the resonance Raman spectra, but even more important for the application of the resonance Raman effect in the investigation of excited vibronic molecular states, in general, and in the investigation of electronic states in larger bio‐molecules, such as the various metallo‐porphyrins. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:Raman tensor  asymmetric  symmetric  SERRS  depolarization ratio
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号