首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational properties of polysiloxanes: from dimer to oligomers and polymers. 1. Structural and vibrational properties of hexamethyldisiloxane (CH3)3SiOSi(CH3)3
Authors:C Carteret  A Labrosse
Abstract:The hexamethyldisiloxane (HMDS)(CH3)3SiOSi(CH3)3 molecule is one of the basic building blocks of silicones and polysiloxanes, as it is used for many chain terminations. Far‐infrared, mid‐infrared, and polarized Raman spectroscopic studies, combined with quantum chemical calculations and vibrational normal mode analyses, were performed for the HMDS molecule. The internal rotation of the trimethylsilyl group was calculated to be nearly free. The large‐amplitude bending motion was found very anharmonic with a barrier to linearity below 4 kJ/mol. Exhaustive assignments of observed wavenumbers have been performed on the basis of calculated potential energy distributions (PED) and atomic displacements. By isotopic 16O 18O substitution, the Si O Si symmetric and antisymmetric stretching modes shift from 521 and 1074 cm−1 to 514 and 1028 cm−1, respectively. This spectroscopic observation provides convincing evidence that the molecule is bent with an angle estimated at around 150°. The comparison of HMDS vibrational spectra with the vibrational spectra of some siloxane derivatives reveals strong effects of silicon substituents on the Si O Si symmetric and antisymmetric stretchings. The Si O Si siloxane bridge group plays a key role in the properties of the HMDS molecule and may also account for some important silicone polymer properties such as their very low glass transition, their high compressibility, and their low surface tension. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:siloxane  quantum calculations  conformations  normal mode analysis  infrared  Raman spectra
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号