首页 | 本学科首页   官方微博 | 高级检索  
     

FINITE ELEMENT DISPLACEMENT PERTURBATION METHOD FOR GEOMETRIC NONLINEAR BEHAVIORS OF SHELLS OF REVOLUTION OVERALL BENDING IN A MERIDIONAL PLANE AND APPLICATION TO BELLOWS (Ⅰ)
摘    要:In order to analyze bellows effectively and practically, the finite-element-displacement-perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba-tion that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root-mean-square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander’s nonlinear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered.

收稿时间:2001-09-29

Finite element displacement perturbation method for geometric nonlinear behaviors of shells of revolution overall bending in a meridional plane and application to bellows (I)
Zhu Wei-ping,Huang Qian. Finite element displacement perturbation method for geometric nonlinear behaviors of shells of revolution overall bending in a meridional plane and application to bellows (I)[J]. Applied Mathematics and Mechanics(English Edition), 2002, 23(12): 1374-1389. DOI: 10.1007/BF02438377
Authors:Zhu Wei-ping  Huang Qian
Affiliation:(1) Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, 200072 Shanghai, PR China
Abstract:In order to analyze bellows effectively and practically, the finite-element-displacement-perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturbation that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root-mean-square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations the shell is idealized into a series of conical frusta for the convenience of practice, Sander's nonlinear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered. Biography: Zhu Wei-ping (1962-)
Keywords:shell of revolution  bellows  deflection by lateral force  geometrical nonlinearity  perturbation technique  finite element method
本文献已被 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号