首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accurate ab initio structure, dissociation energy, and vibrational spectroscopy of the F(-)-CH4 anion complex
Authors:Czakó Gábor  Braams Bastiaan J  Bowman Joel M
Institution:Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA. czako@chem.elte.hu
Abstract:Accurate equilibrium structure, dissociation energy, global potential energy surface (PES), dipole moment surface (DMS), and the infrared vibrational spectrum in the 0-3000 cm(-1) range of the F(-)-CH4 anion complex have been obtained. The equilibrium electronic structure calculations employed second-order M?ller-Plesset perturbation theory (MP2) and coupled-cluster (CC) method up to single, double, triple, and perturbative quadruple excitations using the aug-cc-p(C)VXZ X = 2(D), 3(T), 4(Q), and 5] correlation-consistent basis sets. The best equilibrium geometry has been obtained at the all-electron CCSD(T)/aug-cc-pCVQZ level of theory. The dissociation energy has been determined based on basis set extrapolation techniques within the focal-point analysis (FPA) approach considering (a) electron correlation beyond the all-electron CCSD(T) level, (b) relativistic effects, (c) diagonal Born-Oppenheimer corrections (DBOC), and (d) variationally computed zero-point vibrational energies. The final D(e) and D0 values are 2398 +/- 12 and 2280 +/- 20 cm(-1), respectively. The global PES and DMS have been computed at the frozen-core CCSD(T)/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels of theory, respectively. Variational vibrational calculations have been performed for CH4 and F(-)-CH4 employing the vibrational configuration interaction (VCI) method as implemented in Multimode.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号