首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征投影图的小麦近红外光谱变量选择方法研究
引用本文:宦克为,郑峰,刘小溪,蔡小龙,蔡红星,王睿,石晓光. 基于特征投影图的小麦近红外光谱变量选择方法研究[J]. 光谱学与光谱分析, 2012, 32(11): 2962-2965. DOI: 10.3964/j.issn.1000-0593(2012)11-2962-04
作者姓名:宦克为  郑峰  刘小溪  蔡小龙  蔡红星  王睿  石晓光
作者单位:1. 长春理工大学理学院,吉林 长春 130022
2. 吉林省科学技术信息研究所,吉林 长春 130000
3. 北京东方孚德技术发展中心,北京 100037
基金项目:国家科技攻关课题项目,2011年高等学校博士学科点专项科研基金联合项目,吉林省自然科学基金项目,长春市科技支撑计划项目
摘    要:为了简化模型,提高模型预测精度,利用特征投影图(LPG)进行变量选择。对原始光谱进行连续小波变换(CWT),利用主成分分析(PCA)得到LPG,假定LPG中共线性光谱变量对建模作用相同,选出少数特征光谱变量建立预测模型,所得模型预测均方根误差(RMSEP)为0.345 4,优于其他建模方法,研究结果表明,LPG变量选择可有效简化近红外光谱模型,提高模型预测精度。

关 键 词:近红外光谱  变量选择  特征投影图  支持向量机  
收稿时间:2012-05-02

Research on Variable Selection of Wheat Near-Infrared Spectroscopy Based on Latent Projective Graph
HUAN Ke-wei , ZHENG Feng , LIU Xiao-xi , CAI Xiao-long , CAI Hong-xing , WANG Rui , SHI Xiao-guang. Research on Variable Selection of Wheat Near-Infrared Spectroscopy Based on Latent Projective Graph[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 2962-2965. DOI: 10.3964/j.issn.1000-0593(2012)11-2962-04
Authors:HUAN Ke-wei    ZHENG Feng    LIU Xiao-xi    CAI Xiao-long    CAI Hong-xing    WANG Rui    SHI Xiao-guang
Affiliation:1. College of Science, Changchun University of Science and Technology, Changchun 130022, China2. Institute of Scientific and Technical Information in Jilin Province, Changchun 130000, China3. Beijing Oriental Info-Technology Development Center, Beijing 100037, China
Abstract:To simplify the model and improve the precision of prediction model, latent projective graph (LPG) was used for variable selection. The original spectrum was processed by continuous wavelet transform (CWT), LPG was obtained by principal component analysis (PCA), and based on the assumption that collinear wavelengths might have the same contribution to the modeling, a few latent spectral variables were selected for establishing prediction model. The root mean square error of prediction (RMSEP) model was 0.3454, better than other modeling methods. This work proved that variable selection with LPG could simplify the near-infrared spectral model effectively, and improve the precision of prediction model.
Keywords:Near-infrared spectroscopy  Variable selection  Latent projective graph  Support vector machine   
本文献已被 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号