首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction of water with LiCl, LiBr, and LiI in the deeply supercooled region
Authors:Souda Ryutaro
Institution:Nanoscale Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. souda.ryutaro@nims.go.jp
Abstract:The hydration mechanism of lithium halides was studied using time-of-flight secondary ion mass spectrometry as a function of temperature. The lithium halides embedded in thin films of amorphous solid water segregate to the surface at temperatures higher than 135-140 K, with efficiency increasing in the order of LiCl, LiBr, and LiI. A monolayer of LiCl and LiI adsorbed on the surface of amorphous solid water tends to diffuse into the bulk at 160 K. The infrared absorption band revealed that the aqueous lithium-halide solutions and crystals are formed simultaneously at 160 K; these phenomena are explicable as a consequence of the evolution of supercooled liquid water. The strong surfactant effect is inferred to arise from hydration of a contact ion pair having hydrophilic (lithium) and hydrophobic (halide) moieties. Furthermore, bulk diffusion of lithium halides might result from the formation of a solvent-separated ion pair in supercooled liquid water. The presence of two liquid phases of water with different local structures is probably responsible for the formation of these two hydrates, consistent with the calculated result reported by Jungwirth and TobiasJ. Phys. Chem. B 106, 6361 (2002)].
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号