首页 | 本学科首页   官方微博 | 高级检索  
     


The utilization of classical spin Monte Carlo methods to simulate the magnetic behavior of extended three-dimensional cubic networks incorporating M(II) ions with an S = 5/2 ground state spin
Authors:Boullant E  Cano J  Journaux Y  Decurtins S  Gross M  Pilkington M
Affiliation:Laboratoire de Chimie Inorganique, UMR 8613, CNRS, Université de Paris-Sud F-91405, Orsay, France.
Abstract:The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10-3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH(3))(4)][Mn(N(3))] 1, [Mn(CN(4))](n)() 2, and [Fe(II)(bipy)(3)][Mn(II)(2)(ox)(3)] 3, has been carried out. The best fits were those obtained using the following parameters, J = -3.5 cm(-)(1), g = 2.01 (1); J = -8.3 cm(-)(1), g = 1.95 (2); and J = -2.0 cm(-)(1), g = 1.95 (3).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号