首页 | 本学科首页   官方微博 | 高级检索  
     


All-optical generation of states for "Encoding a qubit in an oscillator"
Authors:Vasconcelos H M  Sanz L  Glancy S
Affiliation:Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, Brazil. hilma@ufc.br
Abstract:Most quantum computation schemes propose encoding qubits in two-level systems. Others exploit the use of an infinite-dimensional system. In "Encoding a qubit in an oscillator" [Phys. Rev. A 64, 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator. One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices, squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (sometimes called "Schr?dinger cat states"), squeezing, linear optical devices, and homodyne detection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号